10. Description of document versions#
Version Aster |
Author (s) Organization (s) |
Description of changes |
5 |
P.Massin, Mr. AL MIKDAD EDF -R&D/ MMN |
Initial text |
7.4 |
X.Desroches |
Update: minor changes |
: Flowchart of the linear buckling calculation
Local landmarks at \(\mathit{NB2}\) knots \({\left[{t}_{1}\mathrm{:}{t}_{2}\mathrm{:}n\right]}_{I}\)
Loop over the points of normal numerical integration of Gauss
retrieving the local constraints vector \(\tilde{S}\mathrm{=}(\begin{array}{c}{\tilde{S}}_{{t}_{1}{t}_{1}}\\ {\tilde{S}}_{{t}_{2}{t}_{2}}\\ {\tilde{\tau }}_{{t}_{1}{t}_{2}}\\ \\ {\tilde{\tau }}_{{t}_{1}n}\\ {\tilde{\tau }}_{{t}_{2}n}\end{array})\mathrm{=}(\begin{array}{c}{\tilde{S}}_{{t}_{1}{t}_{1}}\\ {\tilde{S}}_{{t}_{2}{t}_{2}}\\ \sqrt{2}{\tilde{S}}_{{t}_{1}{t}_{2}}\\ \\ \sqrt{2}{\tilde{S}}_{{t}_{1}n}\\ \sqrt{2}{\tilde{S}}_{{t}_{2}n}\end{array})\)
from the 6 tensor components stored in the PCONTRR \((\begin{array}{c}{\tilde{S}}_{{t}_{1}{t}_{1}}\\ {\tilde{S}}_{{t}_{2}{t}_{2}}\\ 0\\ {\tilde{S}}_{{t}_{1}{t}_{2}}\\ {\tilde{S}}_{{t}_{1}n}\\ {\tilde{S}}_{{t}_{2}n}\end{array})\) mode
formation of the symmetric tensor \(3\mathrm{\times }3\) of local constraints \(\mathrm{[}\tilde{S}\mathrm{]}\)
construction of the transformation matrix \(\mathrm{P}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\mathrm{=}\left[\begin{array}{c}{\mathrm{t}}_{1}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{2}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{3}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\end{array}\right]\) where \({\mathrm{t}}_{3}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\mathrm{=}{n}_{1}({\xi }_{2})\)
calculation of the symmetric tensor \(3\mathrm{\times }3\) of global constraints \(\mathrm{[}S\mathrm{]}\mathrm{=}{P}^{T}\mathrm{[}\tilde{S}\mathrm{]}P\)
for the non-classical term, calculation of \(\text{HQ}\mathrm{=}\left[\frac{\mathrm{[}\stackrel{3\mathrm{\times }9}{\text{HSFM}}\mathrm{]}}{\mathrm{[}\stackrel{2\mathrm{\times }9}{\text{HSS}}\mathrm{]}}\right]\)
\(\begin{array}{c}\text{HQ}\mathrm{=}\\ \left[\begin{array}{cccccc}{({t}_{1}(1))}^{2}& {({t}_{1}(2))}^{2}& {({t}_{1}(3))}^{2}& {t}_{1}(1){t}_{1}(2)& {t}_{1}(2){t}_{1}(3)& {t}_{1}(3){t}_{1}(1)\\ {({t}_{2}(1))}^{2}& {({t}_{2}(2))}^{2}& {({t}_{2}(3))}^{2}& {t}_{2}(1){t}_{2}(2)& {t}_{2}(2){t}_{2}(3)& {t}_{2}(3){t}_{2}(1)\\ {({t}_{3}(1))}^{2}& {({t}_{3}(2))}^{2}& {({t}_{3}(3))}^{2}& {t}_{3}(1){t}_{3}(2)& {t}_{3}(2){t}_{3}(3)& {t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{2}(1){t}_{3}(1)& {\mathrm{2t}}_{2}(2){t}_{3}(2)& {\mathrm{2t}}_{2}(3){t}_{3}(3)& {t}_{2}(1){t}_{3}(2)+{t}_{3}(1){t}_{2}(2)& {t}_{2}(2){t}_{3}(3)+{t}_{3}(2){t}_{2}(3)& {t}_{2}(3){t}_{3}(1)+{t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{3}(1){t}_{1}(1)& {\mathrm{2t}}_{3}(2){t}_{1}(2)& {\mathrm{2t}}_{3}(3){t}_{1}(3)& {t}_{3}(1){t}_{1}(2)+{t}_{1}(1){t}_{3}(2)& {t}_{3}(2){t}_{1}(3)+{t}_{1}(2){t}_{3}(3)& {t}_{3}(3){t}_{1}(1)+{t}_{1}(3){t}_{3}(1)\end{array}\right]\\ \left[\begin{array}{ccccccccc}1& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 1& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 1\\ 0& 1& 0& 1& 0& 0& 0& 0& 0\\ 0& 0& 1& 0& 0& 0& 1& 0& 0\\ 0& 0& 0& 0& 0& 1& 0& 1& 0\end{array}\right]\end{array}\)
calculation of the inverse Jacobian matrix \({J}^{\mathrm{-}1}\) and the determinant \(\text{det}J\)
calculation of \({\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\) with:
\({\tilde{J}}^{\mathrm{-}1}\mathrm{=}\left[\begin{array}{ccc}{J}^{\mathrm{-}1}& 0& 0\\ 0& {J}^{\mathrm{-}1}& 0\\ 0& 0& {J}^{\mathrm{-}1}\end{array}\right];{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\mathrm{=}\left[\mathrm{\cdots }\frac{h}{2}\left[\begin{array}{ccc}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0& 0\\ {N}_{I}^{(2)}& 0& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0\\ 0& {N}_{I}^{(2)}& 0\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}\\ 0& 0& {N}_{I}^{(2)}\end{array}\right]\mathrm{\cdots }I\mathrm{=}\mathrm{1,}\text{NB2}\right]\)
calculation of the third deformation operator \({\tilde{B}}_{3}\mathrm{=}\mathit{HQ}{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\)
calculation and numerical integration \({Z}_{I}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\tilde{B}}_{3}^{T}\tilde{S}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)
calculation of the generalized tensor of**global* stresses
\(\stackrel{9\mathrm{\times }9}{\stackrel{ˉ}{S}}\mathrm{=}\left[\begin{array}{ccc}\mathrm{[}\stackrel{3\mathrm{\times }3}{S}\mathrm{]}& 0& 0\\ 0& \left[S\right]& 0\\ 0& 0& \left[S\right]\end{array}\right]\)
calculation of \({\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\text{avec}\):
\(\begin{array}{c}\mathrm{\cdots }\left[\left[\begin{array}{ccc}{N}_{I,{\xi }_{1}}^{(1)}& 0& 0\\ {N}_{I,{\xi }_{2}}^{(1)}& 0& 0\\ 0& 0& 0\\ 0& {N}_{I,{\xi }_{1}}^{(1)}& 0\\ 0& {N}_{I,{\xi }_{2}}^{(1)}& 0\\ 0& 0& 0\\ 0& 0& {N}_{I,{\xi }_{1}}^{(1)}\\ 0& 0& {N}_{I,{\xi }_{2}}^{(1)}\\ 0& 0& 0\end{array}\right]\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}\\ 0& {N}_{1}^{(2)}{n}_{z}& \mathrm{-}{N}_{1}^{(2)}{n}_{y}\\ \mathrm{-}{x}_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}\\ \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}\\ \mathrm{-}{N}_{1}^{(2)}{n}_{z}& 0& {N}_{1}^{(2)}{n}_{x}\\ {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}& 0\\ {N}_{1}^{(2)}{n}_{y}& \mathrm{-}{N}_{1}^{(2)}{n}_{x}& 0\end{array}\right]\right]\mathrm{\cdots }I\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{\mid }\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}\\ 0& {N}_{\text{NB}2}^{(2)}{n}_{z}& \mathrm{-}{N}_{1}^{(2)}{n}_{y}\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}\\ \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{z}& 0& {N}_{\text{NB}2}^{(2)}{n}_{x}\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}& 0\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}& 0\\ {N}_{\text{NB}2}^{(2)}{n}_{y}& \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{x}& 0\end{array}\right]\\ {\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\mathrm{=}\begin{array}{c}\left[\right]\left[\right]\end{array}\mathrm{[}\mathrm{]}\end{array}\)
calculation and numerical integration of the classical geometric rigidity matrix
\({K}_{\sigma }^{{e}_{\text{classique}}}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]}^{T}\stackrel{ˉ}{S}\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)
End loop on integration points
Loop on all Lagrange knots with distinction from the super knot
calculation of \(\left[{z}_{I}\mathrm{\times }\right]\) knowing that \({Z}_{I}=\left\{\begin{array}{c}\text{.}\\ \text{.}\\ \text{.}\\ {z}_{I}\\ \text{.}\\ \text{.}\\ \text{.}\\ I=\mathrm{1,}\text{NB}2\end{array}\right\}\)
calculation of the normal vector \({n}_{I}\) and its anti-symmetric matrix \(\left[{n}_{I}\mathrm{\times }\right]\)
calculation of the non-classical geometric rigidity matrix
\({\stackrel{3\mathrm{\times }3}{{K}_{\sigma }^{e}}}_{\text{non classique}}(I,I)\mathrm{=}\left[{z}_{I}\mathrm{\times }\right]\left[{n}_{I}\mathrm{\times }\right]I\mathrm{=}\mathrm{1,}\text{NB2}\)
addition of \({\stackrel{3\mathrm{\times }3}{{K}_{\sigma }^{e}}}_{\text{non classique}}(I,I)\) with distinction of the super node
End loop on the knots
Storage of the upper triangular part of \({K}_{\sigma }^{e}\)
FIN
: Flow chart of geometric nonlinear calculation
Local landmarks at NB2 nodes \({\left[{t}_{1}:{t}_{2}:n\right]}_{I}\)
Start JN loop on the NB2 knots
IF JN :math:`` NB1
retrieving the total displacement vector already updated by MAJOUR:
\({u}_{I}(\text{ii})\mathrm{=}\text{ZR}(\text{IDEPLP}+\text{IDEPLM}\mathrm{-}1+6\mathrm{\times }(\text{JN}\mathrm{-}1)+\text{ii});\text{ii}\mathrm{=}\mathrm{1,3};(\text{JN}\mathrm{=}\mathrm{1,}\text{NB}1)\)
retrieving the total rotation vector already updated by MAJOUR
\({\theta }_{I}(\text{ii})\mathrm{=}\text{ZR}(\text{IDEPLP}\mathrm{-}1+6\mathrm{\times }(\text{JN}\mathrm{-}1)+\text{ii}+3);\text{ii}\mathrm{=}\mathrm{1,3};(\text{JN}\mathrm{=}\mathrm{1,}\text{NB}1)\)
ELSE JN
retrieving the total rotation vector
\({\theta }_{I}(\text{ii})\mathrm{=}\text{ZR}(\text{IDEPLP}\mathrm{-}1+6\mathrm{\times }\text{NB}1+\text{ii});\text{ii}\mathrm{=}\mathrm{1,3};(\text{JN}\mathrm{=}\text{NB}2)\)
END IF N
calculation of the rotation matrix \({\Lambda }_{I}\mathrm{=}\text{exp}\left[{\theta }_{I}\mathrm{\times }\right]\)
transformed from normal \({n}_{I}^{\varphi }\mathrm{=}{\Lambda }_{I}{n}_{I}\)
End Loop on \(\mathit{NB2}\) knots
Calculation of \({p}^{e}\mathrm{=}\left\{\begin{array}{c}\mathrm{⋮}\\ {(\begin{array}{c}u\\ v\\ w\\ {n}_{x}^{\varphi }\mathrm{-}{n}_{x}\\ {n}_{y}^{\varphi }\mathrm{-}{n}_{y}\\ {n}_{z}^{\varphi }\mathrm{-}{n}_{z}\end{array})}_{I}\\ \mathrm{⋮}\\ I\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{⋮}\\ {(\begin{array}{c}{n}_{x}^{\varphi }\mathrm{-}{n}_{x}\\ {n}_{y}^{\varphi }\mathrm{-}{n}_{y}\\ {n}_{z}^{\varphi }\mathrm{-}{n}_{z}\end{array})}_{\text{NB}2}\end{array}\right\}\)
Start Loop INTSR on normal reduced Gauss integration points
construction of some of the operators \({\tilde{B}}_{1},{\tilde{B}}_{2}\)
to J = 1, INTSR integration points to be able to extrapolate them
End Loop INTSR on normal reduced Gauss integration points
Start Loop INTSN on Gauss normal numerical integration points
construction of the transformation matrix:
\(\mathrm{P}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\mathrm{=}\left[\begin{array}{c}{\mathrm{t}}_{1}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{2}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{3}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\end{array}\right]\)
Where \({t}_{3}({\xi }_{1},{\xi }_{2},{\xi }_{3})\mathrm{=}n({\xi }_{1},{\xi }_{2})\)
calculation of the inverse Jacobian matrix \({J}^{-1}\) and the determinant \(\text{det}J\)
calculation of \({\tilde{J}}^{-1}=\left[\begin{array}{ccc}{J}^{-1}& 0& 0\\ 0& {J}^{-1}& 0\\ 0& 0& {J}^{-1}\end{array}\right]\)
calculation of the second matrix of derivatives of form functions \({\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}\)
\(\begin{array}{c}\mathrm{\cdots }\left[\left[\begin{array}{ccc}{N}_{I,{\xi }_{1}}^{(1)}& 0& 0\\ {N}_{I,{\xi }_{2}}^{(1)}& 0& 0\\ 0& 0& 0\\ 0& {N}_{I,{\xi }_{1}}^{(1)}& 0\\ 0& {N}_{I,{\xi }_{2}}^{(1)}& 0\\ 0& 0& 0\\ 0& 0& {N}_{I,{\xi }_{1}}^{(1)}\\ 0& 0& {N}_{I,{\xi }_{2}}^{(1)}\\ 0& 0& 0\end{array}\right]\frac{h}{2}\left[\begin{array}{ccc}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0& 0\\ {N}_{I}^{(2)}& 0& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0\\ 0& {N}_{I}^{(2)}& 0\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}\\ 0& 0& {N}_{I}^{(2)}\end{array}\right]\right]\mathrm{...}I\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{\mid }\frac{h}{2}\left[\begin{array}{ccc}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}& 0& 0\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}& 0& 0\\ {N}_{\text{NB}2}^{(2)}& 0& 0\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}& 0\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}& 0\\ 0& {N}_{\text{NB}2}^{(2)}& 0\\ 0& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}\\ 0& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}\\ 0& 0& {N}_{\text{NB}2}^{(2)}\end{array}\right]\\ {\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}\mathrm{=}\begin{array}{c}\left[\right]\left[\right]\end{array}\mathrm{[}\mathrm{]}\end{array}\)
calculation of \(\frac{\mathrm{\partial }u}{\mathrm{\partial }x}\mathrm{=}{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}{p}^{e}\)
calculation of \(A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})\mathrm{=}\left[\begin{array}{ccccccccc}{u}_{,x}& 0& 0& {v}_{,x}& 0& 0& {w}_{,x}& 0& 0\\ 0& {u}_{,y}& 0& 0& {v}_{,y}& 0& 0& {w}_{,y}& 0\\ 0& 0& {u}_{,z}& 0& 0& {v}_{,z}& 0& 0& {w}_{,z}\\ {u}_{,y}& {u}_{,x}& 0& {v}_{,y}& {v}_{,x}& 0& {w}_{,y}& {w}_{,x}& 0\\ {u}_{,z}& 0& {u}_{,x}& {v}_{,z}& 0& {v}_{,x}& {w}_{,z}& 0& {w}_{,x}\\ 0& {u}_{,z}& {u}_{,y}& 0& {v}_{,z}& {v}_{,y}& 0& {w}_{,z}& {w}_{,y}\end{array}\right]\)
calculation of \(H\left[Q+\frac{1}{2}A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})\right]\)
\(\begin{array}{c}H\mathrm{=}\\ \left[\begin{array}{cccccc}{({t}_{1}(1))}^{2}& {({t}_{1}(2))}^{2}& {({t}_{1}(3))}^{2}& {t}_{1}(1){t}_{1}(2)& {t}_{1}(2){t}_{1}(3)& {t}_{1}(3){t}_{1}(1)\\ {({t}_{2}(1))}^{2}& {({t}_{2}(2))}^{2}& {({t}_{2}(3))}^{2}& {t}_{2}(1){t}_{2}(2)& {t}_{2}(2){t}_{2}(3)& {t}_{2}(3){t}_{2}(1)\\ {({t}_{3}(1))}^{2}& {({t}_{3}(2))}^{2}& {({t}_{3}(3))}^{2}& {t}_{3}(1){t}_{3}(2)& {t}_{3}(2){t}_{3}(3)& {t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{2}(1){t}_{3}(1)& {\mathrm{2t}}_{2}(2){t}_{3}(2)& {\mathrm{2t}}_{2}(3){t}_{3}(3)& {t}_{2}(1){t}_{3}(2)+{t}_{3}(1){t}_{2}(2)& {t}_{2}(2){t}_{3}(3)+{t}_{3}(2){t}_{2}(3)& {t}_{2}(3){t}_{3}(1)+{t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{3}(1){t}_{1}(1)& {\mathrm{2t}}_{3}(2){t}_{1}(2)& {\mathrm{2t}}_{3}(3){t}_{1}(3)& {t}_{3}(1){t}_{1}(2)+{t}_{1}(1){t}_{3}(2)& {t}_{3}(2){t}_{1}(3)+{t}_{1}(2){t}_{3}(3)& {t}_{3}(3){t}_{1}(1)+{t}_{1}(3){t}_{3}(1)\end{array}\right]\end{array}\)
calculation of the first deformation operator
\({\tilde{B}}_{1}\mathrm{=}H\left[Q+\frac{1}{2}A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})\right]{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}\)
calculation of the local deformation vector \(\tilde{E}\mathrm{=}{\tilde{B}}_{1}{p}^{e}\)
calculation of the second matrix of derivatives of form functions \({\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\)
\(\begin{array}{c}\mathrm{\cdots }\left[\left[\begin{array}{ccc}{N}_{I,{\xi }_{1}}^{(1)}& 0& 0\\ {N}_{I,{\xi }_{2}}^{(1)}& 0& 0\\ 0& 0& 0\\ 0& {N}_{I,{\xi }_{1}}^{(1)}& 0\\ 0& {N}_{I,{\xi }_{2}}^{(1)}& 0\\ 0& 0& 0\\ 0& 0& {N}_{I,{\xi }_{1}}^{(1)}\\ 0& 0& {N}_{I,{\xi }_{2}}^{(1)}\\ 0& 0& 0\end{array}\right]\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }\\ 0& {N}_{1}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{N}_{1}^{(2)}{n}_{y}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{N}_{1}^{(2)}{n}_{z}^{\varphi }& 0& {N}_{1}^{(2)}{n}_{x}^{\varphi }\\ {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }& 0\\ {N}_{1}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{N}_{1}^{(2)}{n}_{x}^{\varphi }& 0\end{array}\right]\right]\mathit{LI}\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{\mid }\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }\\ 0& {N}_{\text{NB}2}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{y}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{z}^{\varphi }& 0& {N}_{\text{NB}2}^{(2)}{n}_{x}^{\varphi }\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }& 0\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }& 0\\ {N}_{\text{NB}2}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{x}^{\varphi }& 0\end{array}\right]\\ {\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\mathrm{=}\begin{array}{c}\left[\right]\left[\right]\end{array}\mathrm{[}\mathrm{]}\end{array}\)
calculation of the second deformation operator
\({\tilde{B}}_{2}\mathrm{=}H(Q+A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})){\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\)
calculation and numerical integration \({r}^{e}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\tilde{B}}_{2}^{T}\tilde{S}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)
calculation of the behavior matrix \(D\)
calculation and numerical integration \({K}_{m}^{e}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\tilde{B}}_{2}^{T}D{\tilde{B}}_{2}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)
construction of the symmetric tensor \(3\mathrm{\times }3\) of local constraints \(\mathrm{[}\tilde{S}\mathrm{]}\)
calculation of the symmetric tensor \(3\mathrm{\times }3\) of global constraints \(\mathrm{[}S\mathrm{]}\mathrm{=}{P}^{T}\mathrm{[}\tilde{S}\mathrm{]}P\)
calculation of \({\tilde{B}}_{3}^{T}\mathrm{=}H\left[S\right]{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\)
calculation and numerical integration \({Z}_{I}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{z}}{\tilde{B}}_{3}^{T}\tilde{S}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)
calculation of the generalized tensor of**global* constraints \(\stackrel{9\mathrm{\times }9}{\stackrel{ˉ}{S}}\mathrm{=}\left[\begin{array}{ccc}\mathrm{[}\stackrel{3\mathrm{\times }3}{S}\mathrm{]}& 0& 0\\ 0& \left[S\right]& 0\\ 0& 0& \left[S\right]\end{array}\right]\)
calculation and numerical integration of classical stiffness
\({K}_{g}^{{e}_{\text{classique}}}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{z}}{\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]}^{T}\stackrel{ˉ}{S}\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)
End loop INTSN on integration points
Start N loop on \(\mathit{NB2}\) knots
calculation of \(\left[{z}_{I}\mathrm{\times }\right]\) knowing that \({Z}_{I}=(\begin{array}{c}\text{.}\\ \text{.}\\ \text{.}\\ {z}_{I}\\ \text{.}\\ \text{.}\\ \text{.}\\ I=\mathrm{1,}\text{NB}2\end{array})\)
calculation of \(\left[{n}_{I}\mathrm{\times }\right]\)
calculation of the non-symmetric matrix \({\stackrel{3\mathrm{\times }3}{{K}_{g}^{e}}}_{\text{non classique}}(I,I)\mathrm{=}\left[{z}_{I}\mathrm{\times }\right]\left[{n}_{I}\mathrm{\times }\right]\)
IF JN \(\mathrm{\le }\) NB1
addition of \({\stackrel{3\mathrm{\times }3}{{K}_{g}^{e}}}_{\text{non classique}}(I,I)\) with distinction of extra-node
ELSE N
assignment of \({\stackrel{3\mathrm{\times }3}{{K}_{g}^{e}}}_{\text{non classique}}(I,I)\) with distinction from extra-node
END IF N
Storing the entire non-symmetric matrix \({K}^{{e}_{T}}\)