10. Description of document versions#

Version Aster

Author (s) Organization (s)

Description of changes

5

P.Massin, Mr. AL MIKDAD EDF -R&D/ MMN

Initial text

7.4

X.Desroches

Update: minor changes

: Flowchart of the linear buckling calculation

Local landmarks at \(\mathit{NB2}\) knots \({\left[{t}_{1}\mathrm{:}{t}_{2}\mathrm{:}n\right]}_{I}\)

Loop over the points of normal numerical integration of Gauss

  • retrieving the local constraints vector \(\tilde{S}\mathrm{=}(\begin{array}{c}{\tilde{S}}_{{t}_{1}{t}_{1}}\\ {\tilde{S}}_{{t}_{2}{t}_{2}}\\ {\tilde{\tau }}_{{t}_{1}{t}_{2}}\\ \\ {\tilde{\tau }}_{{t}_{1}n}\\ {\tilde{\tau }}_{{t}_{2}n}\end{array})\mathrm{=}(\begin{array}{c}{\tilde{S}}_{{t}_{1}{t}_{1}}\\ {\tilde{S}}_{{t}_{2}{t}_{2}}\\ \sqrt{2}{\tilde{S}}_{{t}_{1}{t}_{2}}\\ \\ \sqrt{2}{\tilde{S}}_{{t}_{1}n}\\ \sqrt{2}{\tilde{S}}_{{t}_{2}n}\end{array})\)

from the 6 tensor components stored in the PCONTRR \((\begin{array}{c}{\tilde{S}}_{{t}_{1}{t}_{1}}\\ {\tilde{S}}_{{t}_{2}{t}_{2}}\\ 0\\ {\tilde{S}}_{{t}_{1}{t}_{2}}\\ {\tilde{S}}_{{t}_{1}n}\\ {\tilde{S}}_{{t}_{2}n}\end{array})\) mode

  • formation of the symmetric tensor \(3\mathrm{\times }3\) of local constraints \(\mathrm{[}\tilde{S}\mathrm{]}\)

  • construction of the transformation matrix \(\mathrm{P}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\mathrm{=}\left[\begin{array}{c}{\mathrm{t}}_{1}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{2}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{3}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\end{array}\right]\) where \({\mathrm{t}}_{3}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\mathrm{=}{n}_{1}({\xi }_{2})\)

  • calculation of the symmetric tensor \(3\mathrm{\times }3\) of global constraints \(\mathrm{[}S\mathrm{]}\mathrm{=}{P}^{T}\mathrm{[}\tilde{S}\mathrm{]}P\)

  • for the non-classical term, calculation of \(\text{HQ}\mathrm{=}\left[\frac{\mathrm{[}\stackrel{3\mathrm{\times }9}{\text{HSFM}}\mathrm{]}}{\mathrm{[}\stackrel{2\mathrm{\times }9}{\text{HSS}}\mathrm{]}}\right]\)

\(\begin{array}{c}\text{HQ}\mathrm{=}\\ \left[\begin{array}{cccccc}{({t}_{1}(1))}^{2}& {({t}_{1}(2))}^{2}& {({t}_{1}(3))}^{2}& {t}_{1}(1){t}_{1}(2)& {t}_{1}(2){t}_{1}(3)& {t}_{1}(3){t}_{1}(1)\\ {({t}_{2}(1))}^{2}& {({t}_{2}(2))}^{2}& {({t}_{2}(3))}^{2}& {t}_{2}(1){t}_{2}(2)& {t}_{2}(2){t}_{2}(3)& {t}_{2}(3){t}_{2}(1)\\ {({t}_{3}(1))}^{2}& {({t}_{3}(2))}^{2}& {({t}_{3}(3))}^{2}& {t}_{3}(1){t}_{3}(2)& {t}_{3}(2){t}_{3}(3)& {t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{2}(1){t}_{3}(1)& {\mathrm{2t}}_{2}(2){t}_{3}(2)& {\mathrm{2t}}_{2}(3){t}_{3}(3)& {t}_{2}(1){t}_{3}(2)+{t}_{3}(1){t}_{2}(2)& {t}_{2}(2){t}_{3}(3)+{t}_{3}(2){t}_{2}(3)& {t}_{2}(3){t}_{3}(1)+{t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{3}(1){t}_{1}(1)& {\mathrm{2t}}_{3}(2){t}_{1}(2)& {\mathrm{2t}}_{3}(3){t}_{1}(3)& {t}_{3}(1){t}_{1}(2)+{t}_{1}(1){t}_{3}(2)& {t}_{3}(2){t}_{1}(3)+{t}_{1}(2){t}_{3}(3)& {t}_{3}(3){t}_{1}(1)+{t}_{1}(3){t}_{3}(1)\end{array}\right]\\ \left[\begin{array}{ccccccccc}1& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 1& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 1\\ 0& 1& 0& 1& 0& 0& 0& 0& 0\\ 0& 0& 1& 0& 0& 0& 1& 0& 0\\ 0& 0& 0& 0& 0& 1& 0& 1& 0\end{array}\right]\end{array}\)

  • calculation of the inverse Jacobian matrix \({J}^{\mathrm{-}1}\) and the determinant \(\text{det}J\)

  • calculation of \({\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\) with:

\({\tilde{J}}^{\mathrm{-}1}\mathrm{=}\left[\begin{array}{ccc}{J}^{\mathrm{-}1}& 0& 0\\ 0& {J}^{\mathrm{-}1}& 0\\ 0& 0& {J}^{\mathrm{-}1}\end{array}\right];{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\mathrm{=}\left[\mathrm{\cdots }\frac{h}{2}\left[\begin{array}{ccc}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0& 0\\ {N}_{I}^{(2)}& 0& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0\\ 0& {N}_{I}^{(2)}& 0\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}\\ 0& 0& {N}_{I}^{(2)}\end{array}\right]\mathrm{\cdots }I\mathrm{=}\mathrm{1,}\text{NB2}\right]\)

  • calculation of the third deformation operator \({\tilde{B}}_{3}\mathrm{=}\mathit{HQ}{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\)

  • calculation and numerical integration \({Z}_{I}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\tilde{B}}_{3}^{T}\tilde{S}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)

calculation of the generalized tensor of**global* stresses

\(\stackrel{9\mathrm{\times }9}{\stackrel{ˉ}{S}}\mathrm{=}\left[\begin{array}{ccc}\mathrm{[}\stackrel{3\mathrm{\times }3}{S}\mathrm{]}& 0& 0\\ 0& \left[S\right]& 0\\ 0& 0& \left[S\right]\end{array}\right]\)

  • calculation of \({\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\text{avec}\):

\(\begin{array}{c}\mathrm{\cdots }\left[\left[\begin{array}{ccc}{N}_{I,{\xi }_{1}}^{(1)}& 0& 0\\ {N}_{I,{\xi }_{2}}^{(1)}& 0& 0\\ 0& 0& 0\\ 0& {N}_{I,{\xi }_{1}}^{(1)}& 0\\ 0& {N}_{I,{\xi }_{2}}^{(1)}& 0\\ 0& 0& 0\\ 0& 0& {N}_{I,{\xi }_{1}}^{(1)}\\ 0& 0& {N}_{I,{\xi }_{2}}^{(1)}\\ 0& 0& 0\end{array}\right]\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}\\ 0& {N}_{1}^{(2)}{n}_{z}& \mathrm{-}{N}_{1}^{(2)}{n}_{y}\\ \mathrm{-}{x}_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}\\ \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}\\ \mathrm{-}{N}_{1}^{(2)}{n}_{z}& 0& {N}_{1}^{(2)}{n}_{x}\\ {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}& 0\\ {N}_{1}^{(2)}{n}_{y}& \mathrm{-}{N}_{1}^{(2)}{n}_{x}& 0\end{array}\right]\right]\mathrm{\cdots }I\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{\mid }\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}\\ 0& {N}_{\text{NB}2}^{(2)}{n}_{z}& \mathrm{-}{N}_{1}^{(2)}{n}_{y}\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}\\ \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{z}& 0& {N}_{\text{NB}2}^{(2)}{n}_{x}\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}& 0\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}& 0\\ {N}_{\text{NB}2}^{(2)}{n}_{y}& \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{x}& 0\end{array}\right]\\ {\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\mathrm{=}\begin{array}{c}\left[\right]\left[\right]\end{array}\mathrm{[}\mathrm{]}\end{array}\)

  • calculation and numerical integration of the classical geometric rigidity matrix

\({K}_{\sigma }^{{e}_{\text{classique}}}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]}^{T}\stackrel{ˉ}{S}\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)

End loop on integration points

Loop on all Lagrange knots with distinction from the super knot

  • calculation of \(\left[{z}_{I}\mathrm{\times }\right]\) knowing that \({Z}_{I}=\left\{\begin{array}{c}\text{.}\\ \text{.}\\ \text{.}\\ {z}_{I}\\ \text{.}\\ \text{.}\\ \text{.}\\ I=\mathrm{1,}\text{NB}2\end{array}\right\}\)

  • calculation of the normal vector \({n}_{I}\) and its anti-symmetric matrix \(\left[{n}_{I}\mathrm{\times }\right]\)

  • calculation of the non-classical geometric rigidity matrix

\({\stackrel{3\mathrm{\times }3}{{K}_{\sigma }^{e}}}_{\text{non classique}}(I,I)\mathrm{=}\left[{z}_{I}\mathrm{\times }\right]\left[{n}_{I}\mathrm{\times }\right]I\mathrm{=}\mathrm{1,}\text{NB2}\)

  • addition of \({\stackrel{3\mathrm{\times }3}{{K}_{\sigma }^{e}}}_{\text{non classique}}(I,I)\) with distinction of the super node

End loop on the knots

Storage of the upper triangular part of \({K}_{\sigma }^{e}\)

FIN

: Flow chart of geometric nonlinear calculation

Local landmarks at NB2 nodes \({\left[{t}_{1}:{t}_{2}:n\right]}_{I}\)

Start JN loop on the NB2 knots

IF JN :math:`` NB1

  • retrieving the total displacement vector already updated by MAJOUR:

\({u}_{I}(\text{ii})\mathrm{=}\text{ZR}(\text{IDEPLP}+\text{IDEPLM}\mathrm{-}1+6\mathrm{\times }(\text{JN}\mathrm{-}1)+\text{ii});\text{ii}\mathrm{=}\mathrm{1,3};(\text{JN}\mathrm{=}\mathrm{1,}\text{NB}1)\)

  • retrieving the total rotation vector already updated by MAJOUR

\({\theta }_{I}(\text{ii})\mathrm{=}\text{ZR}(\text{IDEPLP}\mathrm{-}1+6\mathrm{\times }(\text{JN}\mathrm{-}1)+\text{ii}+3);\text{ii}\mathrm{=}\mathrm{1,3};(\text{JN}\mathrm{=}\mathrm{1,}\text{NB}1)\)

ELSE JN

  • retrieving the total rotation vector

\({\theta }_{I}(\text{ii})\mathrm{=}\text{ZR}(\text{IDEPLP}\mathrm{-}1+6\mathrm{\times }\text{NB}1+\text{ii});\text{ii}\mathrm{=}\mathrm{1,3};(\text{JN}\mathrm{=}\text{NB}2)\)

END IF N

  • calculation of the rotation matrix \({\Lambda }_{I}\mathrm{=}\text{exp}\left[{\theta }_{I}\mathrm{\times }\right]\)

  • transformed from normal \({n}_{I}^{\varphi }\mathrm{=}{\Lambda }_{I}{n}_{I}\)

End Loop on \(\mathit{NB2}\) knots

Calculation of \({p}^{e}\mathrm{=}\left\{\begin{array}{c}\mathrm{⋮}\\ {(\begin{array}{c}u\\ v\\ w\\ {n}_{x}^{\varphi }\mathrm{-}{n}_{x}\\ {n}_{y}^{\varphi }\mathrm{-}{n}_{y}\\ {n}_{z}^{\varphi }\mathrm{-}{n}_{z}\end{array})}_{I}\\ \mathrm{⋮}\\ I\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{⋮}\\ {(\begin{array}{c}{n}_{x}^{\varphi }\mathrm{-}{n}_{x}\\ {n}_{y}^{\varphi }\mathrm{-}{n}_{y}\\ {n}_{z}^{\varphi }\mathrm{-}{n}_{z}\end{array})}_{\text{NB}2}\end{array}\right\}\)

Start Loop INTSR on normal reduced Gauss integration points

  • construction of some of the operators \({\tilde{B}}_{1},{\tilde{B}}_{2}\)

to J = 1, INTSR integration points to be able to extrapolate them

End Loop INTSR on normal reduced Gauss integration points

Start Loop INTSN on Gauss normal numerical integration points

  • construction of the transformation matrix:

\(\mathrm{P}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\mathrm{=}\left[\begin{array}{c}{\mathrm{t}}_{1}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{2}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\\ {\mathrm{t}}_{3}^{\mathrm{T}}({\xi }_{\mathrm{1,}}{\xi }_{\mathrm{2,}}{\xi }_{3})\end{array}\right]\)

Where \({t}_{3}({\xi }_{1},{\xi }_{2},{\xi }_{3})\mathrm{=}n({\xi }_{1},{\xi }_{2})\)

  • calculation of the inverse Jacobian matrix \({J}^{-1}\) and the determinant \(\text{det}J\)

  • calculation of \({\tilde{J}}^{-1}=\left[\begin{array}{ccc}{J}^{-1}& 0& 0\\ 0& {J}^{-1}& 0\\ 0& 0& {J}^{-1}\end{array}\right]\)

  • calculation of the second matrix of derivatives of form functions \({\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}\)

\(\begin{array}{c}\mathrm{\cdots }\left[\left[\begin{array}{ccc}{N}_{I,{\xi }_{1}}^{(1)}& 0& 0\\ {N}_{I,{\xi }_{2}}^{(1)}& 0& 0\\ 0& 0& 0\\ 0& {N}_{I,{\xi }_{1}}^{(1)}& 0\\ 0& {N}_{I,{\xi }_{2}}^{(1)}& 0\\ 0& 0& 0\\ 0& 0& {N}_{I,{\xi }_{1}}^{(1)}\\ 0& 0& {N}_{I,{\xi }_{2}}^{(1)}\\ 0& 0& 0\end{array}\right]\frac{h}{2}\left[\begin{array}{ccc}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0& 0\\ {N}_{I}^{(2)}& 0& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}& 0\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}& 0\\ 0& {N}_{I}^{(2)}& 0\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}\\ 0& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}\\ 0& 0& {N}_{I}^{(2)}\end{array}\right]\right]\mathrm{...}I\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{\mid }\frac{h}{2}\left[\begin{array}{ccc}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}& 0& 0\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}& 0& 0\\ {N}_{\text{NB}2}^{(2)}& 0& 0\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}& 0\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}& 0\\ 0& {N}_{\text{NB}2}^{(2)}& 0\\ 0& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}\\ 0& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}\\ 0& 0& {N}_{\text{NB}2}^{(2)}\end{array}\right]\\ {\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}\mathrm{=}\begin{array}{c}\left[\right]\left[\right]\end{array}\mathrm{[}\mathrm{]}\end{array}\)

  • calculation of \(\frac{\mathrm{\partial }u}{\mathrm{\partial }x}\mathrm{=}{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}{p}^{e}\)

  • calculation of \(A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})\mathrm{=}\left[\begin{array}{ccccccccc}{u}_{,x}& 0& 0& {v}_{,x}& 0& 0& {w}_{,x}& 0& 0\\ 0& {u}_{,y}& 0& 0& {v}_{,y}& 0& 0& {w}_{,y}& 0\\ 0& 0& {u}_{,z}& 0& 0& {v}_{,z}& 0& 0& {w}_{,z}\\ {u}_{,y}& {u}_{,x}& 0& {v}_{,y}& {v}_{,x}& 0& {w}_{,y}& {w}_{,x}& 0\\ {u}_{,z}& 0& {u}_{,x}& {v}_{,z}& 0& {v}_{,x}& {w}_{,z}& 0& {w}_{,x}\\ 0& {u}_{,z}& {u}_{,y}& 0& {v}_{,z}& {v}_{,y}& 0& {w}_{,z}& {w}_{,y}\end{array}\right]\)

  • calculation of \(H\left[Q+\frac{1}{2}A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})\right]\)

\(\begin{array}{c}H\mathrm{=}\\ \left[\begin{array}{cccccc}{({t}_{1}(1))}^{2}& {({t}_{1}(2))}^{2}& {({t}_{1}(3))}^{2}& {t}_{1}(1){t}_{1}(2)& {t}_{1}(2){t}_{1}(3)& {t}_{1}(3){t}_{1}(1)\\ {({t}_{2}(1))}^{2}& {({t}_{2}(2))}^{2}& {({t}_{2}(3))}^{2}& {t}_{2}(1){t}_{2}(2)& {t}_{2}(2){t}_{2}(3)& {t}_{2}(3){t}_{2}(1)\\ {({t}_{3}(1))}^{2}& {({t}_{3}(2))}^{2}& {({t}_{3}(3))}^{2}& {t}_{3}(1){t}_{3}(2)& {t}_{3}(2){t}_{3}(3)& {t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{2}(1){t}_{3}(1)& {\mathrm{2t}}_{2}(2){t}_{3}(2)& {\mathrm{2t}}_{2}(3){t}_{3}(3)& {t}_{2}(1){t}_{3}(2)+{t}_{3}(1){t}_{2}(2)& {t}_{2}(2){t}_{3}(3)+{t}_{3}(2){t}_{2}(3)& {t}_{2}(3){t}_{3}(1)+{t}_{3}(3){t}_{3}(1)\\ {\mathrm{2t}}_{3}(1){t}_{1}(1)& {\mathrm{2t}}_{3}(2){t}_{1}(2)& {\mathrm{2t}}_{3}(3){t}_{1}(3)& {t}_{3}(1){t}_{1}(2)+{t}_{1}(1){t}_{3}(2)& {t}_{3}(2){t}_{1}(3)+{t}_{1}(2){t}_{3}(3)& {t}_{3}(3){t}_{1}(1)+{t}_{1}(3){t}_{3}(1)\end{array}\right]\end{array}\)

  • calculation of the first deformation operator

\({\tilde{B}}_{1}\mathrm{=}H\left[Q+\frac{1}{2}A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})\right]{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{1}\)

  • calculation of the local deformation vector \(\tilde{E}\mathrm{=}{\tilde{B}}_{1}{p}^{e}\)

  • calculation of the second matrix of derivatives of form functions \({\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\)

\(\begin{array}{c}\mathrm{\cdots }\left[\left[\begin{array}{ccc}{N}_{I,{\xi }_{1}}^{(1)}& 0& 0\\ {N}_{I,{\xi }_{2}}^{(1)}& 0& 0\\ 0& 0& 0\\ 0& {N}_{I,{\xi }_{1}}^{(1)}& 0\\ 0& {N}_{I,{\xi }_{2}}^{(1)}& 0\\ 0& 0& 0\\ 0& 0& {N}_{I,{\xi }_{1}}^{(1)}\\ 0& 0& {N}_{I,{\xi }_{2}}^{(1)}\\ 0& 0& 0\end{array}\right]\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }\\ 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }\\ 0& {N}_{1}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{N}_{1}^{(2)}{n}_{y}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{N}_{1}^{(2)}{n}_{z}^{\varphi }& 0& {N}_{1}^{(2)}{n}_{x}^{\varphi }\\ {\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }& 0\\ {\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{I,{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }& 0\\ {N}_{1}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{N}_{1}^{(2)}{n}_{x}^{\varphi }& 0\end{array}\right]\right]\mathit{LI}\mathrm{=}\mathrm{1,}\text{NB}1\\ \mathrm{\mid }\frac{h}{2}\left[\begin{array}{ccc}0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }\\ 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }\\ 0& {N}_{\text{NB}2}^{(2)}{n}_{z}^{\varphi }& \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{y}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{z}^{\varphi }& 0& {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }\\ \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{z}^{\varphi }& 0& {N}_{\text{NB}2}^{(2)}{n}_{x}^{\varphi }\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{1}}^{(2)}{n}_{x}^{\varphi }& 0\\ {\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{\xi }_{3}{N}_{\text{NB}\mathrm{2,}{\xi }_{2}}^{(2)}{n}_{x}^{\varphi }& 0\\ {N}_{\text{NB}2}^{(2)}{n}_{y}^{\varphi }& \mathrm{-}{N}_{\text{NB}2}^{(2)}{n}_{x}^{\varphi }& 0\end{array}\right]\\ {\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\mathrm{=}\begin{array}{c}\left[\right]\left[\right]\end{array}\mathrm{[}\mathrm{]}\end{array}\)

  • calculation of the second deformation operator

\({\tilde{B}}_{2}\mathrm{=}H(Q+A(\frac{\mathrm{\partial }u}{\mathrm{\partial }x})){\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\)

  • calculation and numerical integration \({r}^{e}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\tilde{B}}_{2}^{T}\tilde{S}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)

  • calculation of the behavior matrix \(D\)

  • calculation and numerical integration \({K}_{m}^{e}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{\zeta }}{\tilde{B}}_{2}^{T}D{\tilde{B}}_{2}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)

  • construction of the symmetric tensor \(3\mathrm{\times }3\) of local constraints \(\mathrm{[}\tilde{S}\mathrm{]}\)

  • calculation of the symmetric tensor \(3\mathrm{\times }3\) of global constraints \(\mathrm{[}S\mathrm{]}\mathrm{=}{P}^{T}\mathrm{[}\tilde{S}\mathrm{]}P\)

  • calculation of \({\tilde{B}}_{3}^{T}\mathrm{=}H\left[S\right]{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{3}\)

calculation and numerical integration \({Z}_{I}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{z}}{\tilde{B}}_{3}^{T}\tilde{S}\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)

calculation of the generalized tensor of**global* constraints \(\stackrel{9\mathrm{\times }9}{\stackrel{ˉ}{S}}\mathrm{=}\left[\begin{array}{ccc}\mathrm{[}\stackrel{3\mathrm{\times }3}{S}\mathrm{]}& 0& 0\\ 0& \left[S\right]& 0\\ 0& 0& \left[S\right]\end{array}\right]\)

  • calculation and numerical integration of classical stiffness

\({K}_{g}^{{e}_{\text{classique}}}\mathrm{=}{\mathrm{\int }}_{{\Omega }_{z}}{\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]}^{T}\stackrel{ˉ}{S}\left[{\tilde{J}}^{\mathrm{-}1}{\left[\frac{\mathrm{\partial }N}{\mathrm{\partial }\xi }\right]}_{2}\right]\text{det}Jd{\xi }_{1}d{\xi }_{2}d{\xi }_{3}\)

End loop INTSN on integration points

Start N loop on \(\mathit{NB2}\) knots

  • calculation of \(\left[{z}_{I}\mathrm{\times }\right]\) knowing that \({Z}_{I}=(\begin{array}{c}\text{.}\\ \text{.}\\ \text{.}\\ {z}_{I}\\ \text{.}\\ \text{.}\\ \text{.}\\ I=\mathrm{1,}\text{NB}2\end{array})\)

  • calculation of \(\left[{n}_{I}\mathrm{\times }\right]\)

  • calculation of the non-symmetric matrix \({\stackrel{3\mathrm{\times }3}{{K}_{g}^{e}}}_{\text{non classique}}(I,I)\mathrm{=}\left[{z}_{I}\mathrm{\times }\right]\left[{n}_{I}\mathrm{\times }\right]\)

IF JN \(\mathrm{\le }\) NB1

  • addition of \({\stackrel{3\mathrm{\times }3}{{K}_{g}^{e}}}_{\text{non classique}}(I,I)\) with distinction of extra-node

ELSE N

  • assignment of \({\stackrel{3\mathrm{\times }3}{{K}_{g}^{e}}}_{\text{non classique}}(I,I)\) with distinction from extra-node

END IF N

Storing the entire non-symmetric matrix \({K}^{{e}_{T}}\)