3. Generalized efforts#

It is clear from what is written above that the generalized constraints are:

\(\begin{array}{c}\underline{\underline{\sigma \text{'}}},{\sigma }_{p};\\ {m}_{1}^{\mathrm{1,}}{\text{M}}_{1}^{\mathrm{1,}}{h}_{\mathrm{1m}}^{1};{m}_{1}^{\mathrm{2,}}{\text{M}}_{1}^{\mathrm{2,}}{h}_{\mathrm{1m}}^{2};\\ {m}_{2}^{\mathrm{1,}}{\text{M}}_{2}^{\mathrm{1,}}{h}_{\mathrm{2m}}^{1};{m}_{2}^{\mathrm{2,}}{\text{M}}_{2}^{\mathrm{2,}}{h}_{\mathrm{2m}}^{2};\\ Q\text{'},\text{q}\end{array}\)

The associated generalized deformations are:

\(\text{u},\underline{\underline{\epsilon }}(\text{u})\mathrm{:}{p}_{\mathrm{1,}}\nabla {p}_{1}\mathrm{:}{p}_{\mathrm{2,}}\nabla {p}_{2};T,\nabla T\)

Note:

In the context of saturated permanent HM modeling, the generalized constraints do not contain the term mass supply.