Model problem =============== We consider a 2D static elasticity problem, distributed over two processors. Geometry --------- The elastic domain is a square of extreme points (-50.50) and (50.50). We mesh this domain into 4 quadrangles. +----------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | | | + .. image:: images/100002010000032A0000047AFBB349D66834FB46.png + .. image:: images/1000020100000BAC00000798D08C6CB39B78B108.png + | :width: 1.7756in | :width: 2.2319in | + :height: 2.252in + :height: 2.4571in + | | | + + + | | | +----------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | #. Geometry: a uniform pressure is imposed on the GN border and an embedment condition is imposed on the GD border | #. Meshing: the names of the vertices (N1 to N9) and the meshes (M1 to M12) are in accordance with Code_Aster. There are 8 1D meshes and 4 2D meshes. The blue cells M7, M8 and M10 are assigned to the processor 0. The red meshes M9, M11, and M12 are assigned to the processor 1 | + + + | | | +----------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ Material properties ---------------------- * :math:`E\mathrm{=}\mathrm{1,0}{10}^{11}N\mathrm{/}{m}^{2}` * :math:`\nu \mathrm{=}\mathrm{0,3}` 2D modeling --------------- The model is assigned to the 4 quadrangular cells (group of 2D all cells) and to the 2 segments that constitute the upper edge of the domain (group of elements 1D up). .. code-block:: text MODEL = AFFE_MODELE (MAILLAGE =MA, AFFE =_F (GROUP_MA =( 'all', 'up',), PHENOMENE =' MECANIQUE ', MODELISATION ='C_ PLAN ',), PARALLELISME =_F (DISTRIBUTION =' SOUS_DOMAINE ',), ); A type of distribution of cells has also been defined (by sub-domain). Limit conditions and loading -------------------------------- Pressure is exerted distributed on the upper edge of the square, with ends (-50.50) (50.50): .. code-block:: text PRESSION = AFFE_CHAR_MECA (MODELE = MODEL, PRES_REP =_F (GROUP_MA ='up', PRES =1000000000,),); The base of the square is embedded: we apply the condition*DX* =0, *DY* =0 to the end segment :math:`(-\mathrm{50,}-50)` :math:`(\mathrm{50,}-50)`. This embedment is applied in two ways: * modeling A: with AFFE_CHAR_CINE .. code-block:: text ENCASTR = AFFE_CHAR_CINE (MODELE = MODEL, MECA_IMPO =_F (GROUP_NO ='bottom', DX=0, DY=0,),); * B modeling: with AFFE_CHAR_MECA .. code-block:: text ENCASTR = AFFE_CHAR_MECA (MODELE = MODEL, DDL_IMPO =_F (GROUP_NO ='bottom', DX=0, DY=0,),); Distribution of the problem ------------------------ When creating the model, a distribution of the elementary calculations by sub-domain was chosen. We specify to the solver that the matrix is distributed: MECA_STATIQUE (MODELE = MODEL, CHAM_MATER = AFMAT, EXCIT =( _F (CHARGE = PRESSION,), _F (CHARGE = ENCASTR,),), SOLVEUR =_F (METHODE =' PETSC ', MATR_DISTRIBUEE =' OUI ', ALGORITHME =' GMRES ',),); The calculation is run on 2 processors.